解説・提言

  1. 2023.12.08 人間社会の強靭化と適応は地球温暖化による死亡リスクを軽減してきた(→IEEI HP)
  2. 2023.11.06 地球温暖化か、ヒートアイランドか?―世界の気温データセットの問題点―(→IEEI HP)
  3. 2023.06.20 実態把握が欠如しているオランダの窒素汚染対策(→IEEI HP)
  4. 2023.03.23 オランダの窒素問題と国民に選ばれた農民政党(→アゴラ HP)
  5. 2023.03.22 ダイナミックな太陽活動が過去の気温上昇をもたらした?(→IEEI HP)
  6. 2023.01.12 地球温暖化に伴う海面上昇に匹敵しうる東京の地盤沈下(→IEEI HP)
  7. 2023.01.03 東京都は海面上昇のみならず地盤沈下にも対策を(→アゴラ HP)
  8. 2022.11.08 江戸東京野菜の考察(3)ヒートアイランドの好影響と練馬ダイコンの適応(→CIGS HP)
  9. 2022.10.28 オランダの厳しい窒素排出規制は妥当なのか?(→IEEI HP)
  10. 2022.07.22 地球温暖化とヒートアイランドの見分け方(→IEEI HP)
  11. 2022.07.08 技術革新の裏にあったCO2施肥効果の恩恵(→IEEI HP)
  12. 2022.04.28 地球温暖化によって、日本の大雨は何割増えたのか?(→IEEI HP)
  13. 2022.03.30 地盤沈下対策で海面上昇へのレジリエンスを高める(→CIGS HP)
  14. 2022.03.14 20世紀前半の中国の気温も、現在と同じくらい高かった?(→IEEI HP)
  15. 2022.03.10 【研究ノート】日本における大雨の長期変動の傾向(→CIGS HP)
  16. 2022.02.10 地球温暖化がもたらす便益-農業におけるCO2有効利用-(→日刊工業新聞)
  17. 2021.12.14 【研究ノート】江戸東京野菜の考察(2)気候への適応の形(→CIGS HP)
  18. 2021.11.26 【研究ノート】江戸東京野菜の考察(1)イノベーションの進行と法則(→CIGS HP)
  19. 2021.10.04 江戸時代にもあった現代に匹敵する猛暑年(→IEEI HP)
  20. 2021.09.15 災害は温暖化そのものではなく寒暖の繰り返しで起こる(→IEEI HP)
  21. 2021.08.30 地球温暖化対策に先行する水環境の順応性管理(→CIGS HP)
  22. 2021.08.02 古環境学の進展とエアロゾルの地球冷却効果(→IEEI HP)
  23. 2021.07.22 米国で起こったヒートドームは気象現象(→アゴラ HP)
  24. 2021.07.16 【研究ノート】技術の生態系から生まれるイノベーション:ハーバー・ボッシュ法の考察(→CIGS HP)
  25. 2021.06.18 地盤沈下を対策すれば海面上昇への適応につながる(→アゴラ HP)
  26. 2021.06.08 【研究ノート】世界の地上気温データの補正や選別の実態(→CIGS HP)
  27. 2021.05.31 地球温暖化による大雨への影響評価には100年以上のデータが必要(→IEEI HP)
  28. 2021.05.25 真の地球温暖化の速度を測る:米国と日本の挑戦(→アゴラ HP)
  29. 2021.05.24 都市化と地球温暖化を巡る世界の動き(→IEEI HP)
  30. 2021.05.12 地球温暖化観測所の設立に向けて―正しく知ることの重要性― 後編(→CIGS HP)
  31. 2021.05.12 地球温暖化観測所の設立に向けて―正しく知ることの重要性― 前編(→CIGS HP)
  32. 2021.05.07 極値統計学の考え方―異常気象は、それほど異常ではない?―(→IEEI HP)
  33. 2021.04.23 IPCCの報告書は日本の地球温暖化量を過大評価か(→アゴラ HP)
  34. 2021.04.19 森林で放射性セシウムはどう動いているのか?―研究者がわかりやすく解説します―(→CIGS HP)
  35. 2021.03.08 気候変動のリスクを超える都市農業の適応能力(→IEEI HP)
  36. 2021.03.08 【研究ノート】品種改良と普及プロセスを考慮した適応研究の必要性(→CIGS HP)
  37. 2021.02.28 小泉環境大臣、花粉症は空前の公害です。今すぐスギを伐採して下さい(→アゴラ HP)
  38. 2021.02.01 地球は、産業革命以前から大気汚染で冷却化していた?-気候モデルの不確実性-(→IEEI HP)
  39. 2021.02.01 【研究ノート】過去に起こった火災の不確実性が将来の気温上昇予測を左右する(→CIGS HP)
  40. 2021.01.13 東京では冬のヒートアイランドで寿命が延びた(→IEEI HP)
  41. 2020.12.14 化石燃料は陸上生物の生息域の保全に役立っている(→IEEI HP)
  42. 2020.12.09 猛暑日は都市化によって増大している(→IEEI HP)
  43. 2020.12.09 農業におけるCO₂の有効利用(CCU)の推進(→CIGS HP)
  44. 2020.10.19 日本の気温は、地球温暖化で何度上昇したのか?:精確なデータセットKON2020(→IEEI HP)
  45. 2019.12.06 花粉には強力な「公害対策」が必要だ(→IEEI HP)
  46. 2019.12.02 水田の減少は、日本の気温を上昇させている?(→IEEI HP)
  47. 2019.11.27 「エアロゾル」による地球冷却効果 ―地球温暖化の知られざる不確実性―(→IEEI HP)

受 賞

  1. 2021年 日本エアロゾル学会 日本エアロゾル学会論文賞,「温帯落葉広葉樹林から放出されたバイオエアロゾルの輸送過程の数値解析」(共同受賞者:南光太郎、北和之、反町篤行、保坂健太郎、五十嵐康人)
  2. 2020年 Best Research Team of the Year,Forum for Nuclear Cooperation in Asia (FNCA), Climate Change Science Project, Japan(共同受賞者:Climate Change Science Research Team)
  3. 2019年 大気環境学会 大気環境学会論文賞,「デニューダ・緩和渦集積法を用いたフラックス観測による東京郊外の森林におけるPM2.5 硝酸塩および硝酸ガスの沈着速度」(共同受賞者:坂本泰一、中原聡仁、高橋 章、反町篤行、松田和秀)
  4. 2018年 Journal of Nuclear Science and Technology Most Cited Article Award, "Preliminary estimation of release amounts of 131I and 137Cs accidentally discharged from the Fukushima Daiichi Nuclear power plant"(共同受賞者:茅野政道、中山浩成、永井晴康、寺田宏明、山澤弘実)
  5. 2015年 平成27年度科学技術分野の文部科学大臣表彰 科学技術賞, 「緊急時環境線量情報予測システムWSPEEDIの開発」(共同受賞者:茅野政道、永井晴康、寺田宏明)
  6. 2014年 日本原子力研究開発機構 理事長表彰 研究開発功績賞特賞, 「福島原発事故により大気に放出された放射性物質の放出量、拡散及び沈着過程の早期解明」(共同受賞者:永井晴康、寺田宏明、中山浩成、太田雅和)
  7. 2014年 日本原子力研究開発機構 理事長表彰 業務品質改善賞,「北朝鮮による地下核実験に備えた放射性物質の拡散予測体制の構築と実対応」(共同受賞者:中西千佳、岡本明子、池田武司、佐藤宗平、川上剛、掛札豊和、都築克紀)
  8. 2012年 第44回日本原子力学会論文賞, "Preliminary estimation of release amounts of 131I and 137Cs accidentally discharged from the Fukushima Daiichi Nuclear power plant"(共同受賞者:茅野政道、中山浩成、永井晴康、寺田宏明、山澤弘実)

学術論文・プロシーディング

  1. G. Katata, R. Connolly, and P. O’Neill (2023) Evidence of urban blending in homogenized temperature records in Japan and in the United States: Implications for the reliability of global land surface air temperature data, Journal of Applied Meteorology and Climatology, 62, 1095–1114.
  2. N. Masada, T. Enomoto, G. Katata, N. Sakagami, Y. Suzuki, and S. Oikawa (2023) Competition between the invasive alien species Solidago altissima and the native Pueraria lobata in Japan, Bot. Lett., DOI: 10.1080/23818107.2023.2225098.
  3. G. Katata, T. Yamaguchi, M. Watanabe, K. Fukushima, M. Nakayama, H. Nagano, J. Koarashi, R. Tateno, and T. Kubota (2023) Atmospheric ammonia deposition and its role in a cool-temperate fragmented deciduous broad-leaved forest, Atmos. Environ., 298, 119640.
  4. G. Katata, M. Watanabe, S. Oikawa, A. Takahashi, T. Kubota, Y. Takase, T. Enomoto, N. Sakagami, Y. Suzuki, K. Fukushima and M.U. Ueda (2023) Evidence of NOx and O3 concentration reduction by kudzu (Pueraria lobata) invasion at a Japanese highway, Atmos. Poll. Res., 14, 101644.
  5. H. Nagano, M. Nakayama, G. Katata, K. Fukushima, T. Yamaguchi, M. Watanabe, T. Kondo, M. Atarashi-Andoh, T. Kubota, R. Tateno and J. Koarashi (2021) Soil microbial community responding to moderately elevated nitrogen deposition in a Japanese cool temperate forest surrounded by fertilized grasslands, Soil Sci. Plant Nutr., 67, 606-616.
  6. G. Katata, A. Held (2021) Combined measurements of microscopic leaf wetness and dry-deposited inorganic compounds in a spruce forest, Atmos. Poll. Res., 12, 217-224.
  7. Y. Takase, S. Oikawa, T. Enomoto, G. Katata and N. Sakagami (2020) People's Attitude Towards Strategies to Control Kudzu (Pueraria lobata (Willd.) Ohwi), Papers on environmental information science, 34, 174-179 (in Japanese).
  8. K. Minami, G. Katata, K. Kita, A. Sorimachi, K. Hosaka, and Y. Igarashi (2020) Numerical analyses of transport processes of bioaerosol released from a temperate deciduous broad-leaved forest, Earozol Kenkyu, 35, 208-218 (in Japanese with English abstract and figures).
  9. T. Kubota, H. Kuroda, M. Watanabe, A. Takahashi, R. Nakazato, M. Tarui, S. Matsumoto, K. Nakagawa, Y. Numata, T. Ouchi, H. Hosoi, M. Nakagawa, R. Shinohara, M. Kajino, K. Fukushima, Y. Igarashi, N. Imamura, and G. Katata (2020) Role of advection in atmospheric ammonia: A case study at a Japanese lake basin influenced by agricultural ammonia sources, Atmos. Environ., 243, 117856.
  10. G. Katata, K. Matsuda, A. Sorimachi, M. Kajino, and K. Takagi (2020) Aerosol dynamics and gas-particle conversion in dry deposition of inorganic reactive nitrogen in a temperate forest, Atmos. Chem. Phys., 20, 4933-4949.
  11. G. Katata, R. Grote, M. Mauder, M.J. Zeeman, and M. Ota (2020) Wintertime grassland dynamics may influence below-ground biomass under climate change: a model analysis, Biogeosci., 17, 1071-1085.
  12. N. Imamura, G. Katata, M. Kajino, M. Kobayashi, Y. Itoh, and A. Akama (2020) Fogwater deposition of radiocesium in the forested mountains of East Japan during the Fukushima Daiichi Nuclear Power Plant accident: A key process in regional radioactive contamination, Atmos. Environ., 224, 11739.
  13. R. Wada, M. Ueyama, A. Tani, T. Mochizuki, Y. Miyazaki, K. Kawamura, Y. Takahashi, N. Saigusa, S. Takanashi, T. Miyama, T. Nakano, S. Yonemura Y. Matsumi, and G. Katata (2019) Observation of vertical profiles of NOx, O3, and VOCs to estimate their sources and sinks by inverse modelling in a Japanese larch forest, J. Agr. Meteorol., 76, 1-10.
  14. S. Nakahara, K. Takagi, A. Sorimachi, G. Katata, and K. Matsuda (2019) Enhancement of dry deposition of PM2.5 nitrate in a cool-temperate forest, Atmos. Environ., 212, 136-141.
  15. M. Kajino, T.T. Sekiyama, Y. Igarashi, G. Katata, M. Sawada, K. Adachi, Y. Zaizen, H. Tsuruta, and T. Nakajima (2019) Deposition and dispersion of radio‐cesium released due to the Fukushima nuclear accident: Sensitivity to meteorological models and physical modules, J. Geophys. Res. Atmos., 124, 1823-1845.
  16. T. Kubota, G. Katata*, K. Fukushima, and H. Kuroda (2019) Impacts of atmospheric ammonia volatilized from the cattle feedlot on nitrogen deposition onto Japanese cypress canopy, J. Jpn. Soc. Atmos. Environ., 54, 43-54 (in Japanese with English abstract and figures).
  17. K. Saito, J. Mori, H. Machiya, S. Miyazaki, T. Ise, T. Sueyoshi, T. Yamazaki, Y. Iijima, H. Ikawa, K. Ichii, A. Ito, R. O'oishi, T. Oota, G. Katata, A. Kotani, T. Sasai, A. Sato, H. Sato, A. Sugimoto, R. Suzuki, K. Tanaka, T. Nitta, M. Niwano, E. Burke, H. Park, and S. Yamaguchi (2019) Energy-water budget analysis of an Arctic terrestrial models intercomparison GTMIP, J. Jpn. Soc. Snow Ice, 80, 159-174 (in Japanese with English abstract and figures).
  18. M. Kadowaki, G. Katata, H. Terada, T. Suzuki, H. Hasegawa, N. Akata, and H. Kakiuchi (2018) Impacts of anthropogenic source from the nuclear fuel reprocessing plants on global atmospheric iodine-129 cycle: A model analysis, Atmos. Environ., 184, 278-291.
  19. T. Sakamoto, A. Nakahara, A. Takahashi, A. Sorimachi, G. Katata, and K. Matsuda (2018) Deposition velocity of PM2.5 nitrate and gaseous nitric acid above a forest in suburban Tokyo using relaxed eddy accumulation with denuder sampling technique, J. Jpn. Soc. Atmos. Environ., 53, 136-143 (in Japanese with English abstract and figures).
  20. Y. Sanada, G. Katata, N. Kaneyasu, C. Nakanishi, Y. Urabe, and Y. Nishizawa (2018) Altitudinal characteristics of atmospheric deposition of aerosols in mountainous regions: Lessons from the Fukushima Daiichi Nuclear Power Station accident, Sci. Total Environ., 618, 881-890.
  21. G. Katata, and M. Chino (2017) Source term, atmospheric dispersion, and deposition of radionuclides during the Fukushima Daiichi nuclear power station accident, Earozol Kenkyu, 32, 237-243 (in Japanese with English abstract and figures).
  22. M. Kadowaki, H. Nagai, H. Terada, G. Katata, and S. Akari (2017) Improvement of atmospheric dispersion simulation using an advanced meteorological data assimilation method to reconstruct the spatiotemporal distribution of radioactive materials released during the Fukushima Daiichi Nuclear Power Station accident, Energy Procedia, 131C, 208-215.
  23. M. Kadowaki, G. Katata, H. Terada, and H. Nagai (2017) Development of the Eulerian atmospheric transport model GEARN-FDM: Validation against the European tracer experiment. Atmos. Poll. Res., 8, 394-402.
  24. E. Quansah, G. Katata, M. Mauder, T. Annor, L.K. Amekudzi, J. Bliefernicht, D. Heinzeller, A.A. Balogun, and H. Kunstmann (2017) Numerical Simulation of Surface Energy and Water Balances over a Semiarid Grassland Ecosystem in the West African Savanna. Adv. Meteorol., 2017, 6258180.
  25. A.G. Duarte, G. Katata, Y. Hoshika, M. Hossain, J. Kreuzwiesser, A. Arneth, and N.K. Ruehr (2016) Immediate and potential long-term effects of consecutive heat waves on the photosynthetic performance and water balance in Douglas-fir. J. Plant. Physiol., 205, 57-66.
  26. Chino, M., H. Terada, H. Nagai, G. Katata, S. Mikami, T. Torii, K. Saito, and Y. Nishizawa (2016) Utilization of 134Cs/137Cs in the environment to identify the reactor units that caused atmospheric releases during the Fukushima Daiichi accident. Sci. Rep., 6, 31376.
  27. M. Ota, G. Katata, H. Nagai, and H. Terada (2016) Impacts of C-uptake by plants on the spatial distribution of 14C accumulated in vegetation around a nuclear facility – Application of a sophisticated land surface 14C model to the Rokkasho reprocessing plant, Japan. J. Environ. Radioact., 162-163, 189-204.
  28. A.R. Desai, G. Wohlfahrt, M.J. Zeeman, G. Katata, W. Eugster, L. Montagnani, D. Gianelle, M. Mauder, and H.-P. Schmid (2016) Ecosystem biogeochemistry in the north and central Alps responds strongly to global circulation changes and Foehn frequency. Environ. Res. Lett., 11, 024013.
  29. H. Nagai, H. Terada, M. Chino, G. Katata, S. Mikami, and K. Saito (2015) Source term estimation for the Fukushima Daiichi Nuclear power station accident by combined analysis of environmental monitoring and plant data through atmospheric dispersion simulation. Proceedings on the 16th International Topical Meeting on Nuclear Reactor Thermal Hydraulics (NURETH-16), 4044-4052.
  30. Y. Hoshika, G. Katata, M. Deushi, M. Watanabe, T. Koike, and E. Paoletti (2015) Ozone-induced stomatal sluggishness changes carbon and water balance of temperate deciduous forests. Sci. Rep, 5, 9871.
  31. G. Katata, M. Chino, T. Kobayashi, H. Terada, M. Ota, H. Nagai, M. Kajino, R. Draxler, M.C. Hort, A. Malo, T. Torii, and Y. Sanada (2015) Detailed source term estimation of the atmospheric release for the Fukushima Daiichi Nuclear Power Station accident by coupling simulations of atmospheric dispersion model with improved deposition scheme and oceanic dispersion model. Atmos. Chem. Phys., 15, 1029-1070.
  32. G. Katata (2014) Fogwater deposition modeling for terrestrial ecosystems: A review of developments and measurements. J. Geophys. Res., 119, 8137-8159 (review paper).
  33. T. Yamaguchi, G. Katata, I. Noguchi, S. Sakai, Y. Watanabe, Y. Uematsu, and M. Furutani (2014) Long-term observation of fog chemistry and estimation of fog water and nitrogen input via fog water deposition at a mountainous site in Hokkaido, Japan. Atmos. Res., 151, 82-92.
  34. G. Katata, M. Kajino, K. Matsuda, A. Takahashi, and K. Nakaya (2014) A numerical study of the effects of aerosol hygroscopic properties to dry deposition on a broad-leaved forest. Atmos. Environ., 97, 501-510.
  35. G. Katata, and N. Murao (2014) An application of a sophisticated land surface model for impact assessments of aerosols on vegetation to regional scale analysis. Earozoru Kenkyu, 29, 168-175 (in Japanese with English abstract and figures).
  36. Y. Watanabe, T. Yamaguchi, and G. Katata (2014) Aerosol deposition and the behavior of aerosol particles deposited on the foliar surfaces of trees in cool-temperate forests in Hokkaido. Earozoru Kenkyu, 29, 176-182 (in Japanese with English abstract and figures).
  37. G. Katata, K. Hayashi, K. Ono, H. Nagai, A. Miyata, and M. Mano (2013) Coupling atmospheric ammonia exchange process over a rice paddy field with a multi-layer atmosphere-soil-vegetation model. Agr. Forest Meteorol., 180, 1-21.
  38. G. Katata, T. Yamaguchi, H. Sato, Y. Watanabe, I. Noguchi, H. Hara, and H. Nagai (2013) Aerosol deposition and behavior on leaves in cool-temperate deciduous forests. Part 3: Estimation of fog deposition onto cool-temperate deciduous forest by the inferential method. Asian J. Atmos. Environ., 7, 17-24.
  39. Y. Watanabe, T. Yamaguchi, G. Katata, and I. Noguchi (2013) Aerosol deposition and behavior on leaves in cool-temperate deciduous forests. Part 1: A preliminary study of the effect of fog deposition on behavior of particles deposited on the leaf surfaces by microscopic observation and leaf-washing technique. Asian J. Atmos. Environ., 7, 1-7.
  40. Y. Watanabe, T. Yamaguchi, I. Noguchi, G. Katata, A. Wakamatsu, and T. Kawaida (2013) Measurement of aerosol composition and observation of aerosol particles deposited on leaf surface of forest trees in Hokkaido. Boreal Forest Research, 61, 85-86 (in Japanese).
  41. T. Yamaguchi, I. Noguchi, Y. Watanabe, G. Katata, H. Sato, and H. Hara (2013) Aerosol deposition and behavior on leaves in cool-temperate deciduous forests. Part 2: Characteristics of fog water chemistry and fog deposition in northern Japan. Asian J. Atmos. Environ., 7, 8-16.
  42. M. Chino , H. Terada, G. Katata, H. Nagai, H. Nakayama, H. Yamazawa, S. Hirao, T. Ohara, M. Takigawa, H. Hayami, and M. Aoyama (2012) Reconstruction of atmospheric releases of 131I and 137Cs by the Fukushima Daiichi Nuclear Power Plant Accident. Proceedings on the first NIRS symposium on “Reconstruction of Early Internal Dose in the TEPCO Fukushima Daiichi Nuclear Power Station Accident”, 127-136.
  43. M. Kajino, Y. Inomata, K. Sato, H. Ueda, Z. Han, J. An, G. Katata, M. Deushi, T. Maki, N. Oshima, J. Kurokawa, T. Ohara, A. Takami, and S. Hatakeyama (2012) Development of an aerosol chemical transport model RAQM2 and predictions of Northeast Asian aerosol mass, size, chemistry, and mixing type. Atmos. Chem. Phys., 12, 11833-11856.
  44. G. Katata, H. Terada, H. Nagai, and M. Chino (2012) Numerical reconstruction of high dose rate zones due to the Fukushima Dai-ichi Nuclear Power Plant accident. J. Environ. Radioact., 111, 2-12.
  45. G. Katata, M. Ota, H. Terada, M. Chino, and H. Nagai (2012) Atmospheric discharge and dispersion of radionuclides during the Fukushima Dai-ichi Nuclear Power Plant accident. Part I: Source term estimation and local-scale atmospheric dispersion in early phase of the accident. J. Environ. Radioact., 109, 103-113.
  46. H. Nagai, M. Chino, H. Terada, and G. Katata (2012) Atmospheric dispersion simulations of radioactive materials discharged from the Fukushima Daiichi Nuclear Power Plant due to accident: Consideration of deposition process. Proceedings on the first NIRS symposium on “Reconstruction of Early Internal Dose in the TEPCO Fukushima Daiichi Nuclear Power Station Accident”, 137-150.
  47. H. Terada, G. Katata, M. Chino, and H. Nagai (2012) Atmospheric discharge and dispersion of radionuclides during the Fukushima Dai-ichi Nuclear Power Plant accident. Part II: verification of the source term and analysis of regional-scale atmospheric dispersion. J. Environ. Radioact., 112, 141-154.
  48. M. Chino, H. Nakayama, H. Nagai, H. Terada, G. Katata, and H. Yamazawa (2011) Preliminary estimation of release amounts of 131I and 137Cs accidentally discharged from the Fukushima Daiichi Nuclear Power Plant into the atmosphere. J. Nucl. Sci. Technol., 48, 1129-1134.
  49. G. Katata, M. Kajino, T. Hiraki, M. Aikawa, T. Kobayashi, and H. Nagai (2011) A method for simple and accurate estimation of fog deposition in a mountain forest using a meteorological model. J. Geophys. Res., 116, D20102.
  50. G. Katata, H. Nagai, L. Zhang, A. Held, D. Serça, and O. Klemm (2011) Development of an atmosphere-soil-vegetation model for investigation of radioactive materials transport in the terrestrial biosphere. Prog. Nucl. Sci. Technol., 2, 530-537.
  51. G. Katata, H. Nagai, M. Kajino, H. Ueda, and Y. Hozumi (2010) Numerical study of fog deposition on vegetation for atmosphere-land interactions in semi-arid and arid regions. Agr. Forest Meteorol., 150, 340-353.
  52. G. Katata, and H. Nagai (2010) Recent trend and problems in modeling particle deposition onto vegetation. Earozoru Kenkyu, 25, 323-330 (in Japanese with English abstract and figures).
  53. G. Katata, C.M. Regalado, A. Ritter, and H. Nagai (2009) Application of a land surface model that includes fog deposition over a tree heath–laurel forest in Garajonay national park (La Gomera, Spain). Estudios de la zona no saturada del Suelo (Studies of the Vadose Zone), ZNS’09. IX, 393-400 (available online).
  54. G. Katata, H. Nagai, T. Wrzesinsky, O. Klemm, W. Eugster, and R. Burkard (2008) Development of a land surface model including cloud water deposition on vegetation. J. Appl. Meteorol. Climatol., 47, 2129-2146.
  55. G. Katata, H. Nagai, and H. Ueda (2007) Numerical study of fog occurrence and fog water deposition on the vegetation at a semi-arid coastal area in Saudi Arabia. Proceedings of the 4th International Conference on Fog, Fog Collection and Dew, 33-36.
  56. G. Katata, H. Nagai, H. Ueda, N. Agam, and P.R. Berliner (2007) Development of a land surface model including evaporation and adsorption processes in the soil for the land-air exchange in arid regions. J. Hydrometeorol., 8, 1307-1324.

国際会議発表

  1. G. Katata (2020) Role of advection: A case study at a Japanese lake basin influenced by agricultural ammonia sources, International symposium on Production and Mitigation of Fine Particulate Matter in Agriculture, Korean Society of Soil Science, (invited, recording)
  2. N. Imamura, G. Katata, M. Kajino, M. Kobayashi, Y. Itoh and A. Akama (2019) Evidences for regional radioactive contamination in mountain forests of East Japan due to fogwater deposition during the Fukushima Daiichi Nuclear Power Station accident, 8th International Conference of Fog, Fog Collection and Dew, Taipei, Taiwan.
  3. G. Katata, T. Kubota, H. Kuroda, K. Fukushima, R. Nakazato, S. Matsumoto, K. Nakagawa, Y. Kitami, T. Kikuchi, M. Watanabe and N. Imamura (2018) Regional monitoring network in atmospheric ammonia concentration in Kasumigaura-basin in Ibaraki, Japan, 17th World Lake Conference, Ibaraki, Japan.
  4. T. Kubota, G. Katata, K. Fukushima and H. Kuroda (2018) Local-scale spatial distribution of atmospheric ammonia concentration and deposition around a cattle feedlot, 17th World Lake Conference, Ibaraki, Japan.
  5. A. Nakahara, M. Xu, K. Suzuki, T. Sakamoto, K. Takagi, A. Sorimachi, G. Katata and K. Matsuda (2018) Dry deposition of PM2.5 nitrate in a cool-temperate forest in northern Japan by vertical profile measurements, 2018 Joint 14th iCACGP Quadrennial Symposium/15th IGAC Science Conference, Kagawa, Japan.
  6. K. Suzuki, A. Nakahara, K. Takagi, A. Sorimachi, G. Katata and K. Matsuda (2018) Bi-directional air-surface exchange of ammonia in a cool-temperate forest in northern Japan, 2018 Joint 14th iCACGP Quadrennial Symposium/15th IGAC Science Conference, Kagawa, Japan.
  7. M, Kadowaki, G. Katata, H. Terada, T. Suzuki, H. Hasegawa, N. Akata and H. Kakiuchi (2017) Development of a global transport model for airborne iodine-129 including atmospheric photolysis and gas-particle conversion processes, AGU 2017 Fall Meeting, New Orleans, USA.
  8. N. Kaneyasu, N. Sanada, G. Katata, C. Nakanishi and Y. Urabe (2017) Deposition Mechanisms of Cs-137 at Mountainous Regions in Japan, 2017 Symposium on Atmospheric Chemistry and Physics at Mountain Sites (ACPM2017), Shizuoka, Japan.
  9. H. Nakayama and G. Katata (2017) High-resolution numerical simulation of turbulent flows and dry deposition in mountainous forest, 2017 Symposium on Atmospheric Chemistry and Physics at Mountain Sites (ACPM2017), Shizuoka, Japan.
  10. G. Katata, T. Yamaguchi, Y. Horie, K. Fukushima and T. Hiraki (2017) How to estimate local-scale fogwater deposition at forest stands? – multi-point observational approach,IUFRO Tokyo 2017, Tokyo, Japan.

著 書

  1. K. Hayashi, K. Ono, T. Tokida, M. Matsushima, M. Yano, S. Toyoda, G. Katata, N. Katayanagi, T. Fumoto, H. Nakamura, T. Hasegawa (2020) Nitrogen Aspects of the Free-Air CO2 Enrichment (FACE) Study for Paddy Rice Ecosystems. In: Just Enough Nitrogen: Perspectives on how to get there for regions with too much and too little nitrogen, Springer, 331-340.
  2. Nagai, H., G. Katata, H. Terada, and M. Chino (2014) Source Term Estimation of 131I and 137Cs Discharged from the Fukushima Daiichi Nuclear Power Plant into the Atmosphere. Takahashi, S. Ed.: Radiation Monitoring and Dose Estimation of the Fukushima Nuclear Accident, Springer, 155-173.

その他

  1. G. Katata and M. Ota (2017) A terrestrial ecosystem model (SOLVEG) coupled with atmospheric gas and aerosol exchange processes. JAEA-Data/Code 2016-014, Japan Atomic Energy Agency, 35 pp.
  2. G. Katata (2013) Coupled modeling system for prediction of radioactive material transport in the atmospheric, terrestrial, and oceanic environment. Ionizing Radiation, 39, 3-6 (in Japanese with English abstract).
  3. Kondo, H., T. Yamada, M. Chino, T. Iwasaki, G. Katata, T. Maki, K. Saito, H. Terada, and H. Tsuruta, (2013) Report of the special symposium on the transport and diffusion of contaminants from the Fukushima Dai-Ichi Nuclear Power Plant: Present status and future directions. Tenki, 60, 723-729 (in Japanese).
  4. G. Katata (2009) Improvement of a land surface model for accurate prediction of surface energy and water balances. JAEA-Data/Code 2008-033, Japan Atomic Energy Agency, 64 pp.
  5. Okochi, H., and G. Katata (2009) Atmospheric Deposition -3. Cloud water and Fog deposition–. J. Jpn Soc. Atmos. Environ., 45, A1-A12 (in Japanese).

競争的資金等

  1. Grant-in-Aid for Scientific Research for Scientific Research (A) (19H01155) from Ministry of Education, Culture, Sports, Science and Technology, Japan, “Study on interaction between environmental pollution and meteorological changes via water substances”, April 2019—March 2023 (head: Dr. Mizuo Kajino).
  2. Grant-in-Aid for Scientific Research (B) (17H01868) from Ministry of Education, Culture, Sports, Science and Technology, Japan, “Mechanisms on nitrogen saturation in forested headwater catchment and its impact on forest carbon accumulation”, April 2017—March 2020.
  3. Grant-in-Aid for Scientific Research for Scientific Research (B) (16H02933) from Ministry of Education, Culture, Sports, Science and Technology, Japan, “Deposition mechanisms for gaseous and particulate reactive nitrogen for evaluation of nitrogen load on ecosystems”, April 2016—March 2019 (head: Dr. Kazuhide Matsuda).
  4. Grant-in-Aid for Scientific Research for Scientific Research (C) (15K00530) from Ministry of Education, Culture, Sports, Science and Technology, Japan, “A development of estimation method about spatial variety of fog deposition amount on mountainous forest”, April 2016—March 2019 (head: Dr. Takashi Yamaguchi).
  5. Japan Society for the Promotion of Science (JSPS) Postdoctoral Fellowships for Research Abroad (22865), “Evaluation of effects of nitrogen load on forest ecosystems using a detailed land surface model”, February 2012—April 2012, March 2013—February 2015.
  6. Grant-in-Aid for Scientific Research for Scientific Research (A) (22248026) from Ministry of Education, Culture, Sports, Science and Technology, Japan, “Free-air CO2 Enrichment study for paddy rice with a focus on its effect on nitrogen cycle”, April 2010—March 2013 (head: Dr. Kentaro Hayashi).
  7. Grant-in-Aid for Scientific Research on Innovative Areas (21120512) from Ministry of Education, Culture, Sports, Science and Technology, Japan, “Development of a sophisticated land surface model for impact assessments of acid substances on vegetation”, April 2009—March 2011.
  8. Grant-in-Aid for Scientific Research for Young Scientists B (21710035) from Ministry of Education, Culture, Sports, Science and Technology, Japan, “Development of a sophisticated land surface model for impact assessments of atmospheric aerosols on vegetation”, April 2009—March 2011.

↑
ページの
トップへ